74562 HUMAN BEING AS SEEN IN A FLUOROSCOPE X-RAY MACHINE 1930s GERMAN FILM

This historic, silent German educational film shows a human being as seen in a fluoroscope. In this era, the deleterious effects of x-ray exposure were not well understood. Unfortunately the reality is that the subject of this film may very well have suffered negative effects of the long-term exposure seen in this film.

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery. In its simplest form, a fluoroscope consists of an X-ray source and a fluorescent screen, between which a patient is placed. However, since the 1950s most fluoroscopes have included X-ray image intensifiers and cameras as well, to improve the image’s visibility and make it available on a remote display screen. For many decades fluoroscopy tended to produce live pictures that were not recorded, but since the 1960s, as technology improved, recording and playback became the norm.

Fluoroscopy’s origins and radiography’s origins can both be traced back to 8 November 1895, when Wilhelm Röntgen, or in English script Roentgen, noticed a barium platinocyanide screen fluorescing as a result of being exposed to what he would later call x-rays (algebraic x variable signifying “unknown”). Within months of this discovery, the first crude fluoroscopes were created. These experimental fluoroscopes were simply cardboard funnels, open at the narrow end for the eyes of the observer, while the wide end was closed with a thin cardboard piece that had been coated on the inside with a layer of fluorescent metal salt. The fluoroscopic image obtained in this way was quite faint. Even when finally improved and commercially introduced for diagnostic imaging, the limited light produced from the fluorescent screens of the earliest commercial scopes necessitated that a radiologist prior sat in the darkened room, where the imaging procedure was to be performed, to first accustom their eyes to increase their sensitivity to perceive light during the subsequent procedure. The placement of the radiologist behind the screen also resulted in significant dosing of the radiologist.

In the late 1890s, Thomas Edison began investigating materials for ability to fluoresce when X-rayed, and by the turn of the century he had invented a fluoroscope with sufficient image intensity to be commercialized. Edison had quickly discovered that calcium tungstate screens produced brighter images. Edison, however, abandoned his researches in 1903 because of the health hazards that accompanied use of these early devices. A glass blower of lab equipment (Clarence Dally) and tubes at Edison’s laboratory was repeatedly exposed, suffering radiation poisoning and, later, succumbing to an aggressive cancer. Edison himself damaged an eye in testing these early fluoroscopes.

During this infant commercial development, many incorrectly predicted that the moving images of fluoroscopy would completely replace roentgenographs (radiographic still image films), but the then superior diagnostic quality of the roentgenograph and their already alluded safety enhancement of lower radiation dose via shorter exposure prevented this from occurring. Another factor was that plain films inherently offered recording of the image in a simple and inexpensive way, whereas recording and playback of fluoroscopy remained a more complex and expensive proposition for decades to come (discussed in detail below).

Red adaptation goggles were developed by Wilhelm Trendelenburg in 1916 to address the problem of dark adaptation of the eyes, previously studied by Antoine Beclere. The resulting red light from the goggles’ filtration correctly sensitized the physician’s eyes prior to the procedure, while still allowing him to receive enough light to function normally.

More trivial uses of the technology also appeared in the 1930s-1950s, including a shoe-fitting fluoroscope used at shoe stores.

We encourage viewers to add comments and, especially, to provide additional information about our videos by adding a comment! See something interesting? Tell people what it is and what they can see by writing something for example like: “01:00:12:00 — President Roosevelt is seen meeting with Winston Churchill at the Quebec Conference.”

This film is part of the Periscope Film LLC archive, one of the largest historic military, transportation, and aviation stock footage collections in the USA. Entirely film backed, this material is available for licensing in 24p HD and 2k. For more information visit http://www.PeriscopeFilm.com

Link Copied

About Us

Thanks for your interest in the Periscope Film stock footage library.  We maintain one of the largest collections of historic military, aviation and transportation in the USA. We provide free research and can provide viewing copies if you can let us know some of the specific types of material you are looking for. Almost all of our materials are available in high quality 24p HD ProRes and 2k/4k resolution.

Our material has been licensed for use by:

Scroll to Top

For Downloading, you must Login or Register

Free to Download High Quality Footage

Note: Please Reload page and click again on My Favorites button to see newly added Favorite Posts.